EXAM P QUESTIONS OF THE WEEK

S. Broverman, 2008

Week of January 14/08

$$X$$
 has pdf $\ f(x)=x$ for $\ 0< x<1$. Also, $\ P(X=0)=a$ and $\ P(X=1)=b$, and $\ P(X<0)=P(X>1)=0$.

For what value of a is Var(X) maximized?

A)
$$0 \le a < .1$$
 B) $.1 \le a < .2$ C) $.2 \le a < .3$ D) $.3 \le a < .4$ E) $a \ge .4$

The solution can be found below.

Week of January 14/08 - Solution

In order to be a properly defined random variable, we must have

$$P(X = 0) + P(0 < X < 1) + P(X = 1) = 1$$
, so that

$$a+\int_0^1\!x\,dx+b=a+\frac{1}{2}+b=1$$
 . Therefore, $\,a+b=\frac{1}{2}$.

$$Var(X) = E(X^2) - [E(X)]^2$$
.

$$E(X) = 0 \times a + \int_0^1 x \times x \, dx + 1 \times b = \frac{1}{3} + b$$
, and

$$E(X^2) = 0 \times a^2 + \int_0^1 x^2 \times x \, dx + 1^2 \times b = \frac{1}{4} + b$$
.

Then,
$$Var(X) = \frac{1}{4} + b - (\frac{1}{3} + b)^2 = \frac{5}{36} + \frac{b}{3} - b^2$$
.

Var(X) will be maximized if $\frac{d}{db}[\frac{5}{36}+\frac{b}{3}-b^2]=\frac{1}{3}-2b=0$. This occurs at $b=\frac{1}{6}$. Then $a=\frac{1}{2}-b=\frac{1}{3}$.

Answer: D