EXAM P QUESTIONS OF THE WEEK

S. Broverman, 2007

Week of August 13/07

X has a continuous uniform distribution on the interval [0, 1] and the conditional distribution of Y given X = x is a continuous uniform distribution on the interval [x, 2].

Find E[Y].

A) $\frac{3}{4}$ B) 1 C) $\frac{5}{4}$ D) $\frac{3}{2}$ $\frac{7}{4}$

The solution can be found below.

Week of August 13/07 - Solution

The pdf of X is $f_X(x) = 1$ for $0 \le x \le 1$, and the conditional pdf of Y given X = x is $f_{Y|X}(y|x) = \frac{1}{2-x}$ for $x \le Y \le 2$.

The joint density of X and Y is $f_{X,Y}(x,y) = f_{Y|X}(y|x) \cdot f_X(x) = \frac{1}{2-x}$ defined on the region $0 \le x \le 1$ and $x \le y \le 2$.

$$E[Y] = \int_0^1 \int_x^2 y \cdot \frac{1}{2-x} \, dy \, dx = \int_0^1 \frac{4-x^2}{2(2-x)} \, dx = \int_0^1 \frac{2+x}{2} \, dx = \frac{5}{4} \, .$$

An alternative, solution makes use of the rule E[Y] = E[E[Y|X]]. Since the conditional distribution of Y|X = x is uniform on the interval from x to 2, it follows that $E[Y|X] = \frac{X+2}{2}$. Then, $E[Y] = E[E[Y|X]] = E[\frac{X+2}{2}] = \frac{1}{2}E[X] + 1$. Since X is uniform on the interval from 0 to 1, $E[X] = \frac{1}{2}$. Then, $E[Y] = (\frac{1}{2})(\frac{1}{2}) + 1 = \frac{5}{4}$.

Thanks to Gandalf for reminding me to include this approach to the solution.