EXAM M QUESTIONS OF THE WEEK

S. Broverman, 2006

Week of February 6/06

A Poisson distribution has mean 1 and probability function e^{-1} for e^{-1} f

$$f_k = \frac{e}{k!}$$
 for $k = 0, 1, 2,$

A geometric distribution has mean $\frac{1-p}{p}$, where $0 , and probability function <math>g_k = p(1-p)^k$ for k = 0, 1, 2, ...

A comparison of the two distributions is made by summing the ratios of the probabilities $\sum_{k=0}^{\infty} \frac{f_k}{g_k}$.

Formulate that summation as a function of p, and find the value of p that minimizes the sum.

The solution can be found below.

Week of February 6/06 - Solution

$$rac{f_k}{g_k} = (rac{e^{-1}}{k!}) \Big/ (p(1-p)^k) = rac{e^{-1}(1-p)^k}{p \cdot k!}$$

$$\sum_{k=0}^{\infty} \frac{f_k}{g_k} = \frac{e^{-1}}{p} \cdot \sum_{k=0}^{\infty} \frac{1/(1-p)^k}{k!} = \frac{e^{-1}}{p} \cdot e^{1/(1-p)} = \frac{e^{p/(1-p)}}{p} \ .$$

It can be seen that $\frac{e^{p/(1-p)}}{p}$ approaches ∞ as $p \rightarrow 0^+$ (from above 0) and as $p \rightarrow 1^-$ (from below 1).

To find where $\frac{e^{p/(1-p)}}{p}$ is minimized, we take $ln[\frac{e^{p/(1-p)}}{p}]$, and minimize that.

$$ln[\frac{e^{p/(1-p)}}{p}] = \frac{p}{1-p} - ln p \text{, and } \frac{d}{dp} ln[\frac{e^{p/(1-p)}}{p}] = \frac{d}{dp} \frac{p}{1-p} - ln p$$
$$= \frac{1}{(1-p)^2} - \frac{1}{p} = \frac{p-(1-p)^2}{(1-p)^2 \cdot p} \text{.}$$

The critical points occur where $p - (1-p)^2 = -1 + 3p - p^2 = 0$, so that $p = \frac{3\pm\sqrt{5}}{2}$. We ignore the root > 1, and $p = \frac{3-\sqrt{5}}{2} = .3820$.